

СИСТЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ, ЭНЕРГОРЕСУРСОВ И МОНИТОРИНГА И УПРАВЛЕНИЯ КАЧЕСТВОМ ЭЛЕКТРОЭНЕРГИИ НА БАЗЕ ПТК «ЭКРА-ЭНЕРГОУЧЕТ»

Издание 1.3 • 2022

СИСТЕМА УЧЕТА ЭЛЕКТРОЭНЕРГИИ, ЭНЕРГОРЕСУРСОВ И МОНИТОРИНГА И УПРАВЛЕНИЯ КАЧЕСТВОМ ЭЛЕКТРОЭНЕРГИИ НА БАЗЕ ПТК «ЭКРА-ЭНЕРГОУЧЕТ»

СОДЕРЖАНИЕ

ОБЩАЯ ИНФОРМАЦИЯ О ПТК «ЭКРА-ЭНЕРГОУЧЕТ»	2
Оборудование нижнего уровня	3
Оборудование среднего уровня	4
Оборудование верхнего уровня	6
Алгоритм и варианты построения АИИС УЭ на базе ПТК «ЭКРА-Энергоучет»	. 11
ЦИФРОВАЯ АИИС УЭ ПТК «ЭКРА-ЭНЕРГОУЧЕТ»	. 16
ΠΟΠΟΠΗΝΤΕΠЬΗΔЯ ΝΗΦΟΡΜΔΙΙΝЯ	1.8

ОБЩАЯ ИНФОРМАЦИЯ О ПТК «ЭКРА-ЭНЕРГОУЧЕТ»

Автоматизированная информационно-измерительная система учета электроэнергии, энергоресурсов (АИИС УЭ) и система мониторинга и управления качеством электроэнергии (СМиУКЭ) на базе программно-технического комплекса (ПТК) «ЭКРА-Энергоучет» позволяет потребителю создавать открытые для модернизации и развития системы учета с различным составом оборудования и инженерных систем. АИИС УЭ ПТК «ЭКРА-Энергоучет» может функционировать как в качестве автономной системы, так и в составе автоматизированной системы управления технологическими процессами (АСУ ТП) производства НПП «ЭКРА» (ПТК «EVICON»).

ПТК «ЭКРА-Энергоучет» включает в себя электротехнические шкафы собственного производства и состоит из трех уровней:

нижний уровень или информационно-измерительный комплекс (ИИК) включает в себя шкафы со средствами измерения (СИ) (счетчики электроэнергии, СИ показателей качества электроэнергии (ПКЭ), приборы учета энергоресурсов и т.п.) и каналообразующей аппаратурой;

- средний уровень или информационно-вычислительный комплекс электроустановки (ИВКЭ) включает
 в себя шкафы с устройством сбора и передачи данных (УСПД), устройством синхронизации единого
 времени (УСЕВ) и каналообразующей аппаратурой;
- верхний уровень или информационно-вычислительный комплекс (ИВК) включает в себя шкафы с серверным оборудованием, специализированным программным обеспечением (ПО) ИВК собственного производства, УСЕВ и каналообразующей аппаратурой.

Общая структурная схема построения АИИС УЭ (рисунок 1) применяется для организации комплексного учета разных видов энергоресурсов и СМиУКЭ: электрической и тепловой энергии, природного газа, нефти и нефтепродуктов, сжатого воздуха, пара, воды (ХВС, ГВС, стоки), технических газов (продукты разделения воздуха, широкие фракции легких углеводородов) и других ресурсов.

Для построения АИИС УЭ ПТК «ЭКРА-Энергоучет» применяются шкафы серии ШНЭ 950X и ШНЭ 114XA (таблица 1).

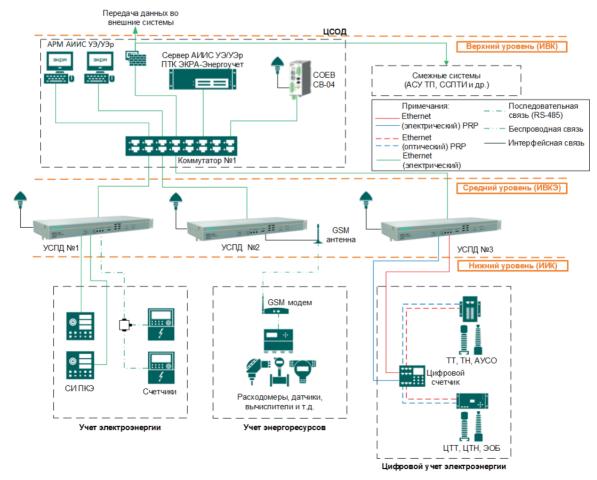


Рисунок 1 - Общая структурная схема АИИС УЭ

ТАБЛИЦА 1 - ШКАФЫ АИИС УЭ			
Тип шкафа	Шифры шкафов АИИС УЭ общепромышленного исполнения	Шифры шкафов АИИС УЭ атомного исполнения	
Шкаф вспомогательного оборудования	ШНЭ 9500	ШНЭ 1140А	
Шкаф средств измерений (СИ, ПКЭ, ТИ и т.д.)	ШНЭ 9501	ШНЭ 1141А	
Шкаф устройства сбора и передачи данных (УСПД)	ШНЭ 9502	ШНЭ 1142А	
Шкаф с серверным оборудованием верхнего уровня	ШНЭ 9503	ШНЭ 1143А	

ОБОРУДОВАНИЕ НИЖНЕГО УРОВНЯ

ИИК выполняет функции измерения и учета активной и реактивной электроэнергии, измерения параметров трехфазной сети, показателей качества электроэнергии, а также учета различных видов энергоресурсов. Структурная схема нижнего уровня (рисунок 1). Программно-аппаратные средства нижнего уровня АИИС УЭ в ПТК «ЭКРА-Энергоучет» представляют собой электротехнические шкафы ШНЭ 9501(1141A) (рисунок 2) со средствами измерений различных производителей.

Для обмена информацией с устройствами нижнего уровня в ПТК «ЭКРА-Энергоучет» используются следующие протоколы связи 1 :

- по стандартам ГОСТ Р МЭК 60870-5-101/103/104;
- СПОДЭС²;
- Modbus RTU/TCP;
- RTU 325;
- проприетарные протоколы связи со СИ.

Рисунок 2 - Пример внешнего вида шкафа ШНЭ 9501(1141А)

¹ Перечень поддерживаемых протоколов и устройств постоянно расширяется, актуальный перечень предоставляется по запросу.

² Спецификация протокола обмена информацией между компонентами интеллектуальной системы учета и приборами учета, ГОСТ Р 58940-2020.

ОБОРУДОВАНИЕ СРЕДНЕГО УРОВНЯ

ИВКЭ выполняет функции сбора информации с нижнего уровня, первичной обработки и передачи результатов измерений на верхний уровень. Структурная схема среднего уровня (рисунок 1).

Программно-аппаратные средства среднего уровня АИИС УЭ в ПТК «ЭКРА-Энергоучет» представляют собой электротехнические шкафы ШНЭ 9502(1142A) (рисунок 5) в состав которых входит УСПД «ЕКRA A01» (рисунок 3).

Рисунок 3 - Внешний вид УСПД «ЕКRA A01»

УСПД «ЕКRA A01» (таблица 2) собственной разработки внесен в Государственный реестр средств измерений под № 86481-22 (рисунок 4).

Для обмена информацией со смежными системами верхнего уровня в ПТК «ЭКРА-Энергоучет» используются следующие протоколы связи:

- по стандартам ГОСТ Р МЭК 60870-5-101/104;
- Modbus RTU/TCP;
- СПОДУС;
- OPC;
- MЭК 61850-8-1 (MMS);
- FTF

Рисунок 4

- Сертификат об утверждении типа СИ EKRA A01

Рисунок 5 - Пример внешнего вида шкафа ШНЭ 9502(1142A)

Наименование параметра		Значение
	Цепь оперативного питания	
Номинальное оперативное напряжение пит	ания постоянного тока U _{пит.ном} , В	220 (110)
Номинальное оперативное напряжение пит		220
Номинальная частота электропитания f _{ном} ,	Гц	50
Потребляемая мощность, не более, Вт		40
Количество блоков питания (с поддержкой	горячего резервирования), шт.	2
	Дискретные входы	
Количество дискретных входов, шт.		4
Срабатывание при приеме сигналов с номи	нальным напряжением постоянного тока , В	24
	Реле состояния	
Количество реле, шт.		1
	Порты передачи данных	
Количество портов Ethernet, шт.		4 (либо две пары порто при использовании PRF
Сетевой интерфейс Ethernet, Мбит		10/100/1000
Количество портов USB 2.0, шт.		6
Количество портов RS-485, шт.		4
Бе	спроводные каналы передачи данных	
Количество разъемов для SIM, шт.		1
Стандарты связи		GSM/GPRS
Поддерживаемые частоты, МГц		850/900/1800/1900
	Порты вывода изображения	
Тип портов		DisplayPort
Количество портов, шт.		1
	Порты аудио входа-выхода	
Тип портов		Jack 3.5
Порт подключения микрофона, шт.		1
Линейный выход, шт.		1
Линейный вход, шт.		1
Пределы допускаемой абсолютной погреш		1
автономном режиме за сутки в рабочем диа Пределы допускаемой абсолютной погреш		±20
относительно шкалы времени UTC (SU) по	протоколу NTP, мс, не более	+20
Пост	оянное запоминающее устройство (ПЗУ)	<u>.</u>
Количество SSD, шт.		2
Максимальный поддерживаемый объем SSI	р, тб	2
Количество MicroSD, шт.		1
Максимальный поддерживаемый объем Mic	roSD, Γ6	512
Опер	ативное запоминающее устройство (ОЗУ)	
Объем памяти, Гб		4-8
	Синхронизация времени	
Программная		SNTP (Клиент/сервер) PTPv2 (клиент)
Аппаратная		ГЛОНАСС/GPS
K	онструктивные характеристики УСПД	
Габаритные размеры (ШхГхВ), мм		482 x 198 x 45
Масса, не более, кг		3

ОБОРУДОВАНИЕ ВЕРХНЕГО УРОВНЯ

ИВК обеспечивает решение следующих задач:

- сбор информации с устройств нижнего и среднего уровней;
- диагностика;
- обработка, хранение и визуализация информации;
- обеспечение контроля достоверности информации и доступа к ней через различные интерфейсы связи.

Структурная схема верхнего уровня (рисунок 1). Программно-аппаратные средства верхнего уровня АИИС УЭ в ПТК «ЭКРА-Энергоучет» представляют собой электротехнические шкафы ШНЭ 9503(1143A) (рисунок 22) с серверным оборудованием и ПО ИВК «ЭКРА-Энергоучет». Сервер АИИС УЭ (рисунок 6) является основным устройством системы. Встроенное ПО ИВК «ЭКРА-Энергоучет» собственного производства функционирует под управлением операционных систем (ОС) Windows, Windows Server и Linux.

Рисунок 6 - Пример внешнего вида сервера ПТК «ЭКРА-Энергоучет»

Рисунок 7 - Сертификат соответствия СДС ФГУП «ВНИИМС» на КП «EKRASCADA»

ТАБЛИЦА 3 - ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПО ИВК ПТК «ЭКРА-ЭНЕРГОУЧЕТ»

Параметр Характеристики

Поддерживаемые OC

Windows 8 и выше; Windows Server 2012 и выше; Debian/GNU Linux версии 8.0 «Jessie» и выше; Astra Linux Common Edition (Орёл) 2.12; Astra Linux Special Edition (Смоленск) 1.6; Альт рабочая станция 9; Альт сервер 9

Тип системы	32- и 64-битные версии для семейства ОС Windows		
Реляционные базы данных	MariaDB и PostgreSQL		
Отчетная подсистема	Генерация отчетов в формате xlsx, pdf, csv, xml, генерация отчетов на основе готовых шаблонов MS Excel		
Масштабируемость системы	до 1 млн. точек учета		

ПО ИВК ПТК «ЭКРА-Энергоучет» состоит из двух основных компонентов:

- клиентская часть (EKRASCADA APM и EKRASCADA Web APM), предназначенная для установки на APM (рисунки 8 15)³, обеспечивает возможность оперативного контроля и визуализацию данных по составу точек учета (ТУ), учету электрической энергии и контролю ПКЭ;
- EKRASCADA Studio (рисунки 16 21) обеспечивает функционал клиентской части, а также создание, выгрузку/загрузку конфигураций в УСПД и сервер ПТК «ЭКРА-Энергоучет».

ПО ИВК ПТК «ЭКРА-Энергоучет» собственной разработки (таблица 3) сертифицировано в системе добровольной сертификации программного обеспечения средств измерений (СДС ПО СИ) (рисунок 7), зарегистрированной ФГУП «ВНИИМС».

ПРИМЕРЫ ВИДЕОКАДРОВ В ПО EKRASCADA APM И EKRASCADA WEB APM

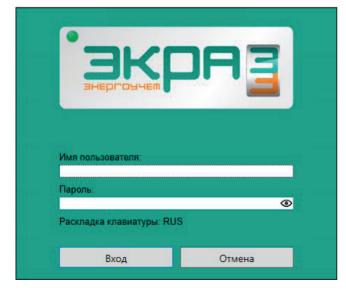


Рисунок 8 - Вход в систему

Рисунок 9 - Структура объекта

³ По умолчанию в качестве экранных форм используются преднастроенные шаблоны схем. При необходимости возможно изменение шаблонов схем в ПО EKRASCADA Studio, после согласования с заводом-изготовителем.

| Company | Comp

Рисунок 10 - Диагностика

Рисунок 11 - Журнал событий

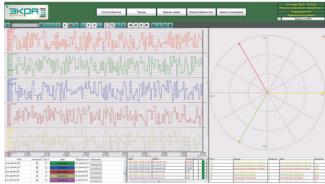
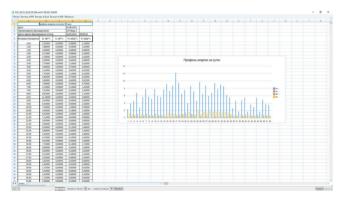



Рисунок 12 – Журнал тревог

Рисунок 13 – Графическая форма отображения изменения аналоговых сигналов и векторной диаграммы



Рисунок 14 – Суточный профиль нагрузки с гистограммой

Рисунок 15 - Параметры электросети

ПРИМЕРЫ ВИДЕОКАДРОВ В ПО EKRASCADA STUDIO

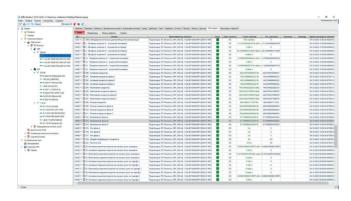


Рисунок 16 - Мониторинг текущих значений

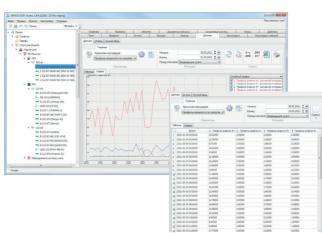


Рисунок 17 – Просмотр данных в виде отчетов

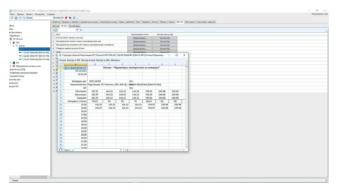


Рисунок 18 – Просмотр данных в виде графиков и таблиц

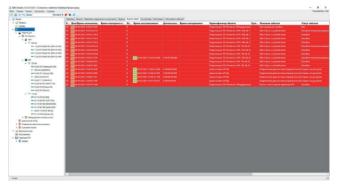


Рисунок 19 – Журнал тревог

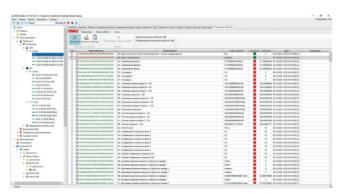


Рисунок 20 - Мониторинг текущих событий

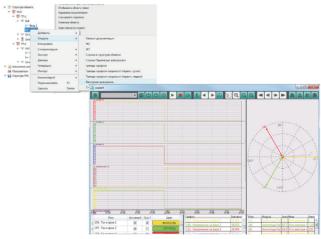


Рисунок 21 – Просмотр мнемосхем с привязкой к точке учета

Для обмена информацией со смежными системами используются следующие протоколы связи 4 :

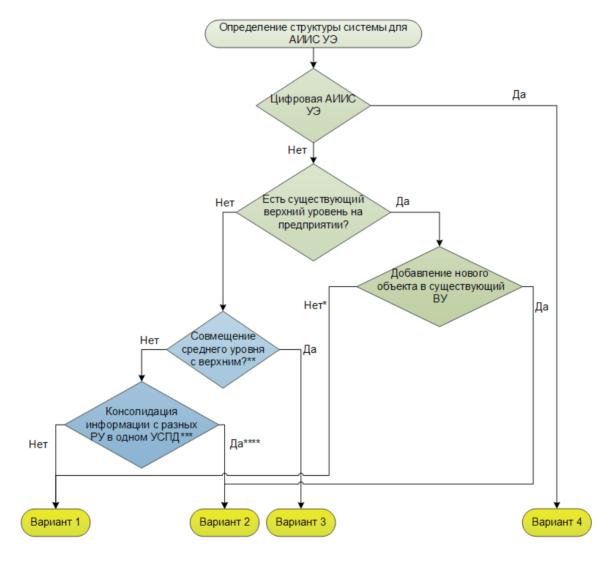
- по стандартам ГОСТ Р МЭК 60870-5-101/104;
- Modbus RTU/TCP;
- OPC;
- MЭK 61850-8-1 (MMS);
- FTP;
- CIM IEC 61968-9/61970;
- E-mail (SMTP, POP3).

Типы поддерживаемых СИ, ИП, счетчиков и СИ ПКЭ в ПТК «ЭКРА-Энергоучет» приведены ниже⁵:

- Binom 3;
- Гран-Электро СС-301;
- ESM;
- Милур 30X;
- Satec PM130, PM175, EM132;
- Гамма 3;
- Pecypc UF2, E4;
- Фотон Ф-57;
- ЭНИП-2;
- МИР C-0X;
- ЩМК96, ЩМК120с;
- СЭТ-4ТМ.XX, ПСЧ-4ТМ.XX;
- КИПП 2м;
- РИМ 489.34;
- AET XXX;
- A18XX;
- ПЦ-6806;
- ЦЭ685X, CE30X;
- ND10;
- Меркурий 23Х;
- Миртек-32-РУ-W32;
- ST402D;
- TE3000;
- НЕВА СПЗ;
- CTЭM-300;
- ФОБОС 3

и т.д.

Рисунок 22 – Пример внешнего вида шкафа $$\operatorname{\textsc{WH}}$$ 9503(1143A)


⁵ Перечень поддерживаемых устройств постоянно расширяется, актуальный перечень предоставляется по запросу. По требованиям заказчика присутствует возможность интеграции любых устройств стороннего производства (счетчики ЭЭ, приборы учета энергоресурсов, СИ ПКЭ и т.п.), среднее время поддержки одного устройства составляет от 1 до 2 месяцев.

⁴ Перечень поддерживаемых протоколов постоянно расширяется, актуальный перечень предоставляется по запросу.

АЛГОРИТМ И ВАРИАНТЫ ПОСТРОЕНИЯ АИИС УЭ НА БАЗЕ ПТК «ЭКРА-ЭНЕРГОУЧЕТ»

^{*} создается целостная автономная АИИС УЭ на объекте; ** упрощение среднего уровня, функцию которого будет выполнять верхний, рекомендуется только для случаев с гарантированным обоснованием надежности системы,

делительных устройств с гарантированным сохранением надежности системы;

**** наиболее вероятно построение системы по смешанному принципу: использование единого УСПД для РУ с географически близким расположением и для географически разделенных РУ использование собственного УСПД.

Рисунок 23 - Алгоритм построения структуры АИИС УЭ

либо на малых объектах с небольшим числом точек учета; *** консолидация информации с разных РУ в одном УСПД рекомендуется только для географически близких распре-

- 1. Структурная схема ИИК-ИВКЭ-ИВК (рисунок 24) применяется:
- при использовании СИ, поддерживающих типы связи смешанного принципа (RS-485/Ethernet);
- при физической удаленности уровней ИИК от ИВК.
- 2. Количество СИ, портов коммутаторов и серверов портов масштабируется под проект.
- 3. УСПД применяются для консолидации, хранения данных и передачи данных на верхний уровень.
- 4. Наличие и количество APM на объекте определяется картой заказа для AИИС УЭ.

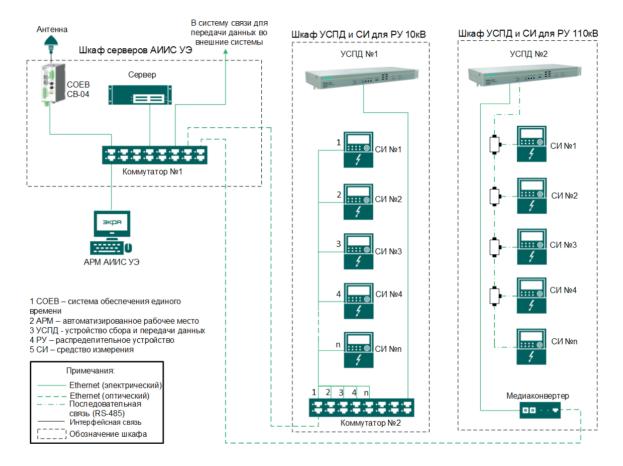


Рисунок 24 - Пример построения ПТК «ЭКРА-Энергоучет». Вариант №1

- 1. Структурная схема ИИК-ИВКЭ-ИВК (рисунок 25) применяется:
- при использовании СИ, поддерживающих типы связи RS-485/Ethernet;
- при физической удаленности уровней ИИК от ИВК;
- для малых (локальных) систем АИИС УЭ.
- 2. Количество СИ, портов коммутаторов и серверов портов масштабируется под проект.
- 3. УСПД применяются для консолидации, хранения данных и передачи данных на верхний уровень.
- 4. Наличие и количество АРМ на объекте определяется картой заказа для АИИС УЭ.

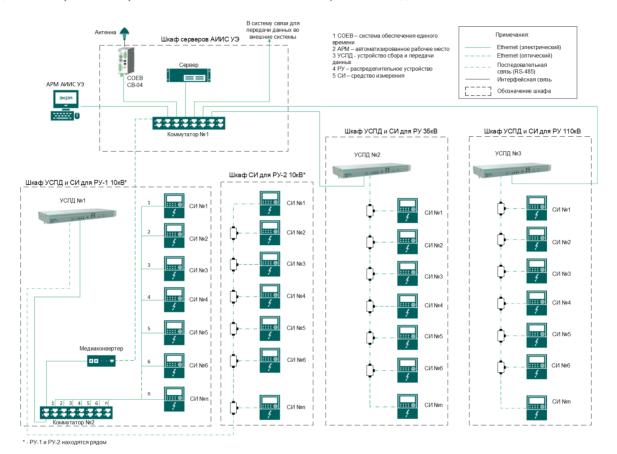


Рисунок 25 - Пример построения ПТК «ЭКРА-Энергоучет». Вариант №2

- 1. Структурная схема ИИК-ИВК (рисунок 26) применяется:
- при обеспечении резервирования устройств и каналов связи;
- при использовании СИ, поддерживающих типы связи смешанного принципа (RS-485/Ethernet);
- при физической удаленности уровней ИИК от ИВК.
- 2. Количество СИ, портов коммутаторов и серверов портов масштабируется под проект.
- 3. Наличие и количество АРМ на объекте определяется картой заказа для АИИС УЭ.

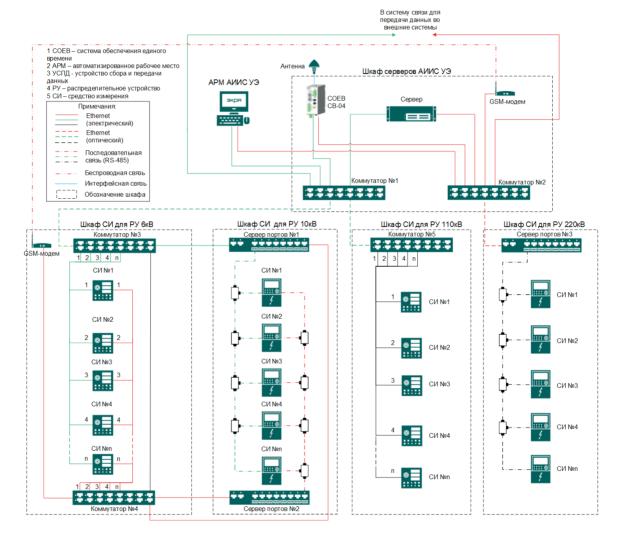


Рисунок 26 - Пример построения ПТК «ЭКРА-Энергоучет». Вариант №3

- 1. Структурная схема ИИК-ИВКЭ (рисунок 27) применя-
- при обеспечении резервирования устройств и каналов связи, СОЕВ;
- при физической удаленности уровней ИИК от ИВК;
- для малых (локальных) систем АИИС УЭ.
- 2. Количество СИ, УСШ и портов коммутаторов масшта-бируется под проект.
- 3. Синхронизация времени устройств УСШ осуществляется от СОЕВ по протоколу PTPv.2.
- 4. Синхронизация времени счетчиков осуществляется по протоколу связи от верхнего уровня.
- 5. Наличие и количество АРМ на объекте определяется картой заказа на АИИС УЭ.

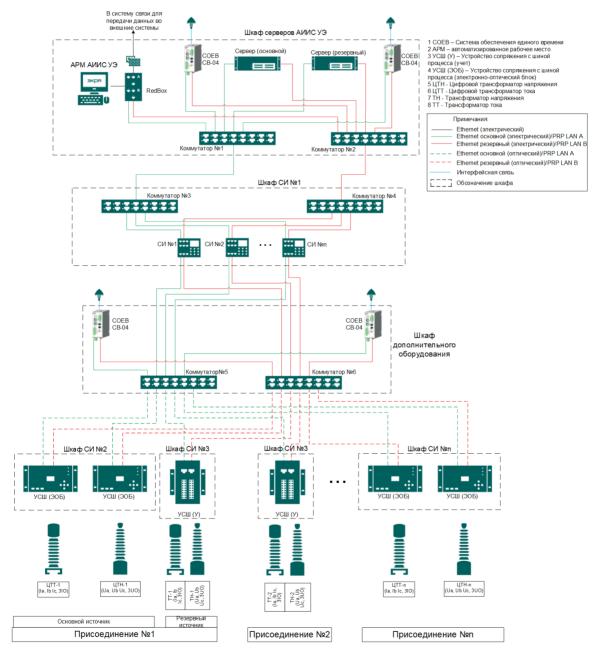


Рисунок 27 - Пример построения цифрового ПТК «ЭКРА-Энергоучет». Вариант №4

ЦИФРОВАЯ АИИС УЭ ПТК «ЭКРА-ЭНЕРГОУЧЕТ»

При построении цифровых автоматизированных информационно-измерительных систем используются следующие стандарты и технологии цифровой подстанции:

- MЭК 61850;
- модель данных устройств;
- унифицированное описание подстанции;
- протоколы вертикального (MMS) обмена;
- протоколы горизонтального (SV) обмена;
- цифровые (оптические) трансформаторы тока и напряжения с ЭОБ;
- преобразователи аналоговых величин тока и напряжения (Stand Alone Merging Units (SAMU), AУСО);
- цифровые счетчики электроэнергии.

Рассмотрим подробнее архитектуру цифровой подстанции, выполненную в соответствии со стандартом МЭК 61850 (рисунок 28).

АИИС УЭ, построенная по технологии «Цифровая подстанция», делится на три уровня:

- ИИК (уровень присоединения, таблица 4):
 - первичные датчики для сбора аналоговой информации с цифровых трансформаторов тока и напряжения – ЭОБ;
 - первичные датчики для сбора аналоговой информации с измерительных электромагнитных трансформаторов тока и напряжения – АУСО;
 - » цифровые счетчики;
 - » система обеспечения единого времени;
- ИВКЭ (подстанционный уровень, таблица 5):
 - » устройства сбора и передачи данных;
- ИВК (станционный уровень, таблица 6):
 - » система обеспечения единого времени;
 - » серверы верхнего уровня (сервер АИИС УЭ, концентратор данных);
 - » АРМ персонала подстанции.

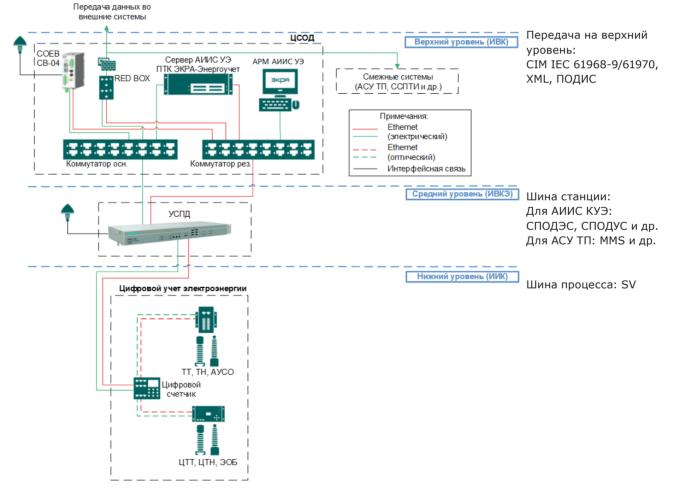


Рисунок 28 - Архитектура цифровой АИИС УЭ ПТК «ЭКРА-Энергоучет»

ТАБЛИЦА 4 - РЕКОМЕНДУЕМЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ В ЧАСТИ УРОВНЯ ИИК ЦИФРОВОЙ АИИС УЭ ПТК «ЭКРА-ЭНЕРГОУЧЕТ»			
Состав уровня ИИК	Предлагаемое решение на базе устройств НПП «ЭКРА»	Предлагаемое решение на базе устройств сторонних производителей (рекомендованное)	Примечание
Цифровые измерительные трансформаторы тока и напряжения	- -	ТТЭО, ДНЕЭ, ЭТН (АО «Профотек»)	Проверенное решение совместно со счетчиками ESM-SV
Преобразователи аналоговых сигналов (АУСО)		ENMU (ИЦ «Энергосервис»)	(ИЦ «Энергосервис»). Имеется сертификат СИ
Цифровые счетчики электрической энергии		ESM-SV (ИЦ «Энергосервис»)	Имеется сертификат СИ
Устройства синхронизации времени (для АУСО, ЦТТ и ЦТН)	CB-04	-	Имеется сертификат СИ. Проверенные модели с поддержкой PTPv2
Промышленные коммутаторы	-	Стандарт Телеком/ Kyland	Проверенные модели с поддержкой PTPv2

ТАБЛИЦА 5 - РЕКОМЕНДУЕМЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ В ЧАСТИ УРОВНЯ ИВКЭ ЦИФРОВОЙ АИИС УЭ ПТК «ЭКРА-ЭНЕРГОУЧЕТ»			
Состав уровня ИИК	Предлагаемое решение на базе устройств НПП «ЭКРА»	Предлагаемое решение на базе устройств сторонних производителей (рекомендованное)	Примечание
Устройство сбора и передачи данных (УСПД)	EKRA A01		Имеется сертификат СИ
Устройства синхронизации времени (для УСПД)	CB-04	-	Имеется сертификат СИ

ТАБЛИЦА 6 - РЕКОМЕНДУЕМЫЕ ТЕХНИЧЕСКИЕ РЕШЕНИЯ В ЧАСТИ УРОВНЯ ИВК ЦИФРОВОЙ АИИС УЭ ПТК «ЭКРА-ЭНЕРГОУЧЕТ»			
Состав уровня ИИК	Предлагаемое решение на базе устройств НПП «ЭКРА»	Предлагаемое решение на базе устройств сторонних производителей (рекомендованное)	Примечание
Сервер баз данных с установленным ПО ИВК	ЕКRA A01 + ПО ИВК «ЭКРА- Энергоучет»	Промышленный сервер + ПО ИВК «ЭКРА-Энергоучет»	Решение на базе ПО ИВК «ЭКРА-Энергоучет» возможно для систем АИИС КУЭ
Автоматизированные рабочие места (APM)	EKRA A01 + APM «ЭКРА- Энергоучет»	Промышленный ПК + APM «ЭКРА-Энергоучет	

ДОПОЛНИТЕЛЬНАЯ ИНФОРМАЦИЯ

Услуги по направлению:

- определение основных технических решений6:
 - проведение предпроектного обследования, сбор исходных данных;
 - » разработка технического задания на автоматизированную систему;
- проектные работы:
 - » разработка технорабочего проекта;
- производство оборудования автоматизированной системы (всегда):
 - » разработка эксплуатационной документации для системы;
 - » разработка программы и методики приемочных испытаний системы:
 - » разработка комплекта документации;
- работы на объекте (всегда):
 - » шеф-монтажные работы;
 - » пуско-наладочные работы;
 - » приемочные испытания системы;
 - » сдача системы в опытную эксплуатацию;
 - » сдача системы в промышленную эксплуатацию;
 - » сервисное сопровождение системы;
- комплекс работ по сертификации новой (расширению существующей) АИИС УЭ.

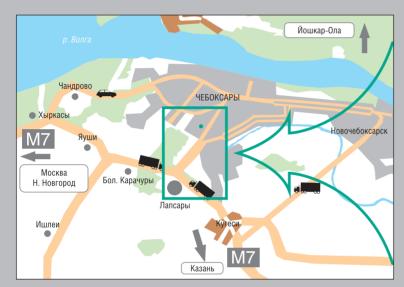
Услуги дополнительного профессионального образования:

Негосударственное образовательное учреждение дополнительного профессионального образования «Научно-образовательный центр «ЭКРА» Общества с ограниченной ответственностью Научно-производственное предприятие «ЭКРА» (НОУ «НОЦ «ЭКРА») реализует программы повышения квалификации, касающиеся микропроцессорной аппаратуры релейной защиты и автоматики и противоаварийной автоматики. Открыты направления по обучению АИИС УЭ (в том числе и электронному) заказчиков, включая цифровые АИИС КУЭ, создан стенд для демонстрации и отладки решений на базе предприятия.

Для оперативного реагирования на обращения заказчика НПП «ЭКРА» имеет сервисные центры (рисунок 29) по всей России и в странах ближнего зарубежья. Более подробная информация о сервисных центрах размещена на сайте: https://ekra.ru/support/.

Также для решения вопросов сервиса функционирует круглосуточная техническая поддержка по горячей линии 8-800-250-8352 (звонок по России бесплатный). Сегодня предприятие НПП «ЭКРА» способно осуществлять комплексные поставки электротехнического оборудования для комплектации и модернизации энергетических объектов «под ключ».

Рисунок 29 - Сервисные центры НПП «ЭКРА»


⁶ Для упрощения работы по проектированию внешними проектными центрами, разработан альбом типовых решений ПТК «ЭКРА-Энергоучет».

- ООО НПП «ЭКРА»
- 428003 РФ г Чебоксары пр И Яковлева

Директор департамента автоматизации энергосистем:

Разумов Роман Вадимович

E-mail: razumov_rv@ekra.ru, тел./факс (8352) 220-110 (секретарь) (8352) 220-130 (автосекретарь) доб. 1374

Технические консультации: Кустиков Алексей Валерьевич

E-mail: kustikov_av@ekra.ru, тел./факс (8352) 220-110 (секретарь) (8352) 220-130 (автосекретарь) доб. 1127

Дирекция маркетинга и продаж: (продажа, ТКП, реклама) E-mail: otm@ekra.ru Телефон: (8352) 22-01-25 (прямой)

Департамент технического маркетинга: (консультации по вопросам подбора оборудования): Григорьев Андрей Георгиевич E-mail: grigoriev_ag@ekra.ru, Телефон: (8352) 22-01-30 (автосекретарь) доб. 9018

экря

ООО НПП «ЭКРА» 428003, РФ, г. Чебоксары, пр. И. Яковлева, 3 тел. / факс: (8352) 22 01 10 (многоканальный) 22 01 30 (автосекретарь) e-mail: ekra@ekra.ru

https://ekra.ru